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Abstract—Mcthod of initial functions for an axially symmetric state of stress in elasto-dynamic
problems has been formulated which gives a complete choice in prescribing the boundary conditions
in terms of cither stresses or displacements, or a combination of stresses and displacements. The
general dynamic response of the elastic body has been derived in the form of a set of transcendental
partial differential equations lrom which the initial functions can be evaluated in terms of prescribed
boundary conditions. The method is applied, as an illustration, to the flexueal theory of circular
plate subjected to antisymmetric Tateral loads. Numerical examples of free vibrations of circular
plates are given. The results are compared with solutions from classical theory.

INTRODUCTION

The method of initial functions for static problems has been formulated by Vlasov (1957),
Vl6asov and Leontev (1966) and Lure (1964). Das and Sctlur (1970) extended this method
to plane clasto-dynamic problems. Later on, this method was also extended to three-
dimensional clasto-dynamic problems by Rao and Das (1977). Significant contributions by
Iyengereral. (1974a,b, 1975, 1976), Bufler (1971), Bufler and Meier (1975), Haydl (1971a,b),
and Haydl and Sherbourne (1976a,b) were made in the arcas of solid mechanics and modern
control theory prior to the work by Rao and Das.

In the present work, a method has been developed for the dynamics of axially symmetric
elastic bodies. The governing dynamic equations for an axially symmetric state of stress
and the corresponding constitutive relations are expressed in four first order coupled
equations in two displacement and stress components. These equations are taken in the
form of a Maclaurin series in the spatial coordinate in the direction of the axis of symmetry,
involving functions and their derivatives of stress and displacement on a specified initial
planc which is perpendicular to the axis of symmetry. For an clastic body bounded by two
such parallel planes two of the four functions will generally be known on each of these
bounding planes. Satisfaction of these boundary conditions will result in two transcendental
partial differential equations involving the unknown functions on the initial plane or
alternatively onc equation in an auxiliary function. The stresses and displacements at any
layer within the body are cxpressed in terms of lincar combinations of the initial functions
and their derivatives.

The method developed here is applicd to derive, in 2 manner that is independent of
KirchhofI's hypothesis, an exact dynamic equation for the axially symmetric oscillations of
acircular plate. For straight-crested waves, the velocitics of wave propagation are computed
for values of wave lengths and the results are compared with those obtained using classical
plate theory. The fundamental natural frequency for a circular plate with a clamped edge
is also computed using the first approximate theory and is compared with the corresponding
value using the classical plate theory.
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712 S. M. SARGAND et al.
FORMULATION OF THE PROBLEM

In axially symmetric problems. four initial functions are sufficient to determine the
state of stress and strain in the body. These functions are the displacement components
Uy(r.t) and Wy(r,t) and the stress components ¢.(r.t) and t_.(r, ) on the plane - = 0 as
shown in Fig. 1.

The dynamic equations of an axially symmetric body without body forces are:
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Introducing the symbols in eqns (3) into eqns (1) and (2), rearranging and using matrix

notations, we have:
U w w U
{2 -l oY)

Fig. 1. Conventional sketch of an clastic body.
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where

| | —va2 1-2v
[A]=[¢z _az], g= | A ®)
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Here. the differential operators, a,  and £, follow the usual rules of algebra.
Let us assume the solutions of eqns (4) in a Maclaurin’s series in the - direction :

U(r.z.0 U,
. 2282
2(r.z0 =<l+:ﬂ+ zlf +) Zo 6)
Wzt : W,
T(r,z,0 T,

where U, = U(r,0, 1) etc., these being the initial unknown functions on the plane z = 0.
The higher derivatives of the initial functions in eqns (5) can be successively obtained
by the use of eqns (5). Thus

o) -alt) wf2)-of3)

where
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It can be seen from eqns (7) that even powers of § operating on U, Z or W, T will
result in expressions U, Z or W, T respectively. The higher even derivatives in the z direction
are obtained by the repeated use of eqns (7) and the higher odd derivatives are obtained
by the use of eqns (4) together with eqns (7).

Grouping even and odd powers of 8 in eqn (6) and substituting from eqns (4) and (7),
we get

U FAS A U, 22 W,
{Z}— (l+ §C+ -'-'C + ){Zo}+A(ZI+3—!D+§D R T,

LA A Wo} 2 2 U,
{ }—(I+§?D+ED +--){T0 +B(el+ O+ GO (] )

where /is a 2 x 2 unit matrix.
Using Sylvester’s theorem (Gantmacher, 1980), we can express the function, F(M), of
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a second order matrix M in the tollowing manner:
M—4.0 . M- .

toy — A Ay — Ay

where 4, and /. are the distinct roots of the matrix M.
The roots of the matrices C and D are:

=oAL A= T+ QE (i
where
Q | —2v
S 2=y’

Applying eqn (10) to the functions of matrices involved in egns (9). we get:

C"=1C, +22C.. D"=1Dy+:D. (12)
where
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Substituting the proper power of Cand D from the generul expressions (12) into eyns
£ E. |

(9), we get:
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where
o= =38 and oy, = \;’/xl oRes
The eqns (14) and the expression for 4, can be written as
L/' I‘IIU Ll“\ Lll: l‘UI .
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where
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Fig. 2. Circular plate with an axially symmetric load.

R PR z2 o PV
—2a" 4+ X
Ly=Ly=——7—00527,+ -7 COs 2}
S <
7(12_ :2) _(712_ :2)
. - ¢7) . < 0
L,.=L,Jt=——F5s—sinzy +- o3 sin -y,
718 26
,  —1 |
L, =L,/ = —5+€0sIy + ;5 CO8 27,
¢
N L =22 =QE%)
L.= L,/ * = "—;7—=sinzy + ———5—sin Iy,
EALS Y:
h v M
s 2" =E) 222" =¢7)
L, =L,a = o cos zy ey COS 2Y
G S
2x° — 27 4 &2
Lo, =L..= _, coszy, + -y = CO8 27,
S ¢
4 —12 : .
L,.=_ ;y8inzy + —T—5——SsINIy,
1S 726
—42’(x* = ¢7) (2a° =§*)°
L, = ———Fy——=sinzy + ——-5 - 8in Iy,
I’ls 7267
(2x* =& —da? (2} _sz)
L, =S8Ny + —13 - sin 2y,
baLS 726
2 & a’
- S
L,= ——sinzy + T sin zy,.
7$° 72

(16)

Equation (13), together with the operators (16), represents in terms of four initial
functions U,, W,. Z,. T,. the complete expressions for the response of an elastic solid in
an axially symmetric state. On any plane - = 0, any two of these initial functions will be
known and the remaining two initial functions have to be solved by using the conditions

on any other = = constant planc.

This method is useful in solving a variety of problems in solid mechanics dealing with
plates, laym.d medium, ete. In this paper, the method is illustrated by solving some problems

using plate theory.

APPLICATION OF METHOD

Consider an elastic body bounded by two parallel planes and subjected to axially
symmetric loads. These loads are antisymmetric on the bounding planes as shown in

Fig. 2



716 S. M. SARGAND et al.

If we take = = 0 as the reference plane, Uy = Z, = 0 on this plane because of anti-
symmetric loading. On the planes - = +h, Z = + P(r,t) and T = 0. Deleting the terms (',
and Z, in eqn (15) and satisfying the boundary conditions on plane = = hor -z = —h, we
obtain

L.(WWo+ L. ()T = P(r.1)
Llw(h)W0+Lu(h)T0 = 0 (l-,)

Introducing an auxiliary function F(r, ¢) such that

L.(h-F=-T,
L. F=W,. (18)

It can be observed that the second of eqns (17) is automatically satisfied and the first of
(15) yields

(LWL, (h)—L. (W)L, F=P(r1). (19)

By using the operators (16), eqn (19) reduces to

712____:2 412(12_:2)

< S . ) . .
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726 s

Operating L, (h) on egn (19), we can obtain eqn (20) in terms of the modified transverse
deflection of the middle surface Wy,

Equation (20) is the exact transcendental partial differential equation governing the
flexural vibrations of a circular plate with axially symmetric loading. This equation has
been derived independent of Kirchhof's hypothesis.

Expanding the trigonometric series in eqn (20) and including terms up to 4°, we obtain
the following familiar form:

boE e 0<! e owo) 22—y L[19 ,ﬂ(alvng)
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It can be seen from eqn (21) that the shear deformation and rotary inertial effects are
included.

Particular solutions can be obtained. Let us assume that the solution of eqn (20)
(without the load terms in the form of plane radially traveling wave) is

oy

l-::}l’(r.r). @1

[}

wolr. 1) = cos 2rn/i(r—ct) (22

where 4 is the wave length and c is the velocity of wave propagation. Substituting eqn (22)
into eqn (20) we get ;
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Fig. 3. Variation of ¢/c, with 24/A.
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The limiting eqn of (23) as h/i — 2 s
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LEquation (24) is similar to the Rayleigh surface wave equation and gives the lowest
value of ¢/¢, = 0.927 for v = 0.3. The lowest values of ¢/c, for various values of /2 are
plotted in Fig. 3 for v = 0.3 and given in Table 1.

Let us consider axially symmetric flexural oscillations of a circular plate with radius «.
By classical theory, the natural frequencies w are related to the eigenvalues £ as follows :

Table |

c/e,

2i'a Exact eqn (23)  First approx. eqn (21)

0.2 0.497 0.486
04 0.718 0.691
0.6 0.813 0.779
0.8 0.860 0.822
1.0 0.886 0.847
1.2 0.901 0.861
1.4 0911 0.871
1.6 0.917 0.877
1.8 0.92 0.882
2.0 0.923 0.885
1000 0.927 0.90
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Fig. 4. Vartation of o1, 'c, for various of 11 a.
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Using eqn (21), without external loads, we have:

.: N () l -y ! - N ’ : 7 --8' 1 4
o ‘:’(”) +(2»--v>(n:>"<”> LU "(”)- (26)
a (ha) c, o, S ¢

¥

Forv = 0.3 and a plate with clamped ends, various values of /¢, are computed for
values of ir/a and are plotted in Fig. 4 and given in Table 2.

[t can be observed that the fundamental natural frequency obtained by using the
classical theory s larger than that obtiined by use of the first approximation theory since
Kirchhofl's assumption used in deriving the classical theory makes the plate stifter.

CONCLUSION

The method of initial functions has been developed for an axially symmetrice state off
stress in an elastic body. Knowing the stresses and displacements on a given plane in the
body, the state of stress and displacement can be found at any point in the body by using
this method. As an application, rigorous dynamic equations are obtained for the flexural

Table 2
woC,
hea First approx. Classical
0.05 0.2468 0.2481
0.10 0.4674 0.49601
0.15 0.7125 07442
0.20 0.9213 1.9923
0.2§ 11109 1.2404
0.30 1.2809 1 4884
0.35 1.4324 1.7365
04 1.5660 1.9846
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vibrations of a circular plate and these are in the form of transcendental partial differential
equations. Simplified equations of any desired order may be obtained from these equations.
Numerical values for fundamental natural frequency of a circular plate with clamped
edge are computed by using first approximation theory and compared with similar values
computed by using classical theory.
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